¿Qué es Machine Learning? Comprendiendo los fundamentos básicos

Lo que hasta hace poco se consideraba ficción, ahora es una realidad. La tecnología que sólo se podía ver en las películas y leer en los libros es actualmente la realidad en la que vivimos. Mientras que algunas de las mentes más grandes sólo pudieron haber soñado en el pasado sobre lo qué es machine learning y lo que podría traer a la humanidad, el fenómeno está muy vivo.

Machine learning, o abreviado como ML, es un término de ciencias de la computación que se refiere a la inteligencia artificial. Es una tecnología que puede aprender e imitar funciones cognitivas como las neuronas. Puede resolver problemas por sí solo y no sólo responder preguntas como un asistente virtual.

Con el aumento de la capacidad de las máquinas para mejorar la vida de las personas, ya podemos notar el software machine learning en algunas partes como el reconocimiento facial, los autos automatizados, las redes sociales y los pilotos automáticos en los aviones. Como dice el Teorema de Tesler: "El ML es lo que aún no se ha hecho". Las capacidades de la inteligencia artificial que se clasifican como ML pueden entender con éxito el habla humana, las simulaciones militares, la competencia en el más alto nivel de juegos de ordenador y mucho más. Ahora que hemos visto un poco de lo qué es machine learning, vamos a bucear más profundo, ¿De acuerdo?

Una visión más profunda de qué es Machine Learning
What is machine learning - A robot

Desde los asistentes virtuales como Siri y Alexa, el software machine learning se está integrando rápidamente en nuestra vida cotidiana. Aunque algunos de estos ejemplos no pueden ser considerados como la "verdadera" inteligencia artificial que puede tomar decisiones por sí sola, el impacto de los proyectos derivados continúan avanzando en capacidad y prevalencia.

Latest Coursera Coupon Found:

Para tener una mejor comprensión de lo qué es machine learning, es necesario retroceder un poco sobre su desarrollo.

Una breve historia del Machine Learning

Las primeras ideas de los seres artificiales fueron mencionadas en la antigüedad y han estado en la escena de la ficción durante mucho tiempo. Historias como la de Frankenstein fueron el resultado de ello. El campo de los estudios de inteligencia artificial nació en 1956, en  Dartmouth College en los Estados Unidos. Un grupo de científicos de universidades como el MIT y la CMU se convirtieron en los fundadores de la investigación de la tecnología ML. Los programas que ellos crearon han sido considerados como los primeros fundamentos básicos sobre qué es machine learning. Ellos fueron los que crearon un sistema informático que podía aprender estrategias de damas, resolver problemas en álgebra y probar teoremas lógicos. Creían que en unos 20 años las máquinas serían capaces de hacer cualquier cosa que el hombre pudiera hacer.

Aunque eran muy optimistas sobre el progreso de su creación, no se dieron cuenta de que el desarrollo machine learning les iba a plantear el siguiente reto. Debido a los difíciles tiempos financieros, tanto el gobierno de Estados Unidos como el británico decidieron dejar de financiar los proyectos de investigación exploratoria de ML. El período, en el que fue muy difícil encontrar fondos suficientes para continuar la investigación, se llamó "invierno ML".

Sin embargo, el "invierno ML" no duró demasiado. En 1985, la investigación estaba viva nuevamente y para entonces, el mercado del aprendizaje automático alcanzó más de mil millones de dólares. A través de tropiezos y caídas, a finales del siglo XX y principios del XXI, el desarrollo de la inteligencia artificial se ha utilizado en el diagnóstico médico, la logística, la minería de datos, etc. El software machine learning comenzó a tener éxito debido al aumento de la potencia computacional. Como lo establece la ley de Moore, se puede esperar que la velocidad y la capacidad de las computadoras se dupliquen cada dos años. Esto significa que la evolución de la informática avanza incuestionablemente rápido y seguirá aumentando la calidad del trabajo de las personas en consecuencia.

El concepto básico sobre qué es Machine Learning

El aprendizaje automático como proceso y como producto es muy difícil de entender si no está en tu conocimiento. Para hacerlo lo más simple posible, la tecnología ML es un software que toma la información de entrada y la convierte en otra información, es decir, en salida.

La mayor diferencia entre la inteligencia artificial y otros tipos de programas de software es que para la inteligencia artificial, el creador, es decir, un programador, no tenía que dar instrucciones sobre cada característica que está haciendo. A través de ejemplos y prácticas, aprende la información necesaria por sí mismo.

What is machine learning - BB-8 droid¿Por qué es machine learning importante?

Para entender lo qué es machine learning y su importancia tiene que comenzar con una frase muy simple: fue creado para reducir el esfuerzo humano y ayudar en las áreas en las que es peligroso que una persona intervenga. Aunque hay muchas maneras diferentes de utilizar la inteligencia artificial, funciona como una aceleración de algún tipo de proceso y da al usuario un resultado preciso. La idea del software ML es crear un mundo libre de errores. Describamos algunas de sus características principales y más importantes:

  • Machine learning aprende a través del aprendizaje repetitivo y el descubrimiento a través de los datos. En lugar de manejar la información por sí mismo, el ML hace la automatización robótica que puede realizar tareas computarizadas de gran volumen sin experimentar ninguna forma de cansancio y tardanza. Vale la pena mencionar que este proceso aún necesita una investigación humana, ya que el sistema de ML necesita tener las preguntas correctas.
  • Obtendrá el máximo provecho de los datos. Como se ha mencionado anteriormente, con el montaje correcto por parte de un experto, la tecnología ML puede funcionar sin fatiga durante mucho tiempo. Lo cual machine learning es asombroso para crear una ventaja competitiva contra los competidores comerciales. La recolección de datos ha crecido significativamente en los últimos años y la importancia de la misma se ha vuelto enorme. No es de extrañar que haya habido muchos escándalos y regulaciones de protección de datos durante este tiempo. Todo el mundo sabe que los datos pueden jugar un papel importante en muchas áreas de trabajo y el ML puede facilitar su clasificación.
  • El software machine learning juega un papel importante en la seguridad. Al dar al ML acceso al almacenamiento de datos, puede funcionar como un sistema de detección de fraudes mucho más rápido con la ayuda de un aprendizaje profundo.
  • Utilizar los fundamentos de machine learning para mejorar los productos actuales. Si estás familiarizado con el marketing digital, entonces sabes que el Internet de las cosas está llegando, nos guste o no. Web 3.0, el nombre alternativo a el Internet de las cosas (IoT). La definición de IoT significa que amplía el propósito de los dispositivos casuales y cotidianos que utilizamos. En el mercado de consumo, el Internet de las cosas es sinónimo de las cosas que hacen un "hogar inteligente". Cubre dispositivos, electrodomésticos, cámaras de seguridad, termostatos, etc.
  • Las redes neuronales profundas nos ayudan a lograr una precisión extrema. Lo que también es asombroso sobre qué es  machine learning es que a través del aprendizaje profundo, la clasificación de imágenes y la inteligencia de reconocimiento de objetos puede detectar el cáncer en las resonancias magnéticas con la misma precisión que un radiólogo experto.

Como podemos ver, el impacto del aprendizaje automático es innegable en la etapa actual de la informática y las tecnologías. No te equivoques, no son todas las ventajas de la tecnología ML, hay mucho más que eso. Pero ahora que mencionamos el aprendizaje profundo y las redes neuronales, ¿Qué son exactamente?

Redes neuronales

Teóricamente, la red neuronal es un circuito o una red de neuronas. En este caso, se trata de una red neuronal artificial que ayuda a la máquina a aprender a resolver un problema. Una red neuronal es un conjunto de ciertos algoritmos que han sido modelados para ser similares al cerebro humano. Estos algoritmos están diseñados para reconocer patrones de información. La información se reconoce a través de la percepción de la máquina, el etiquetado o la agrupación de la entrada bruta. Así como serían imágenes, sonidos o textos de la vida real, las redes neuronales artificiales lo entienden a través de tensores n-dimensionales que contienen los valores y números. Es una de las cosas más importantes acerca de lo qué es machine learning.

Las redes neuronales ayudan a agrupar y clasificar los datos. Todo el proceso ayuda a agrupar los datos no etiquetados de acuerdo con las similitudes entre las entradas de ejemplo, y las redes neuronales clasifican los datos cuando tienen un conjunto de datos etiquetados para entrenar. Este tipo de aprendizaje se llama supervisado. Por otro lado, existe el aprendizaje no supervisado, que ayuda a encontrar patrones previamente desconocidos en el conjunto de datos sin etiquetas preexistentes.

Pros
  • Professional service
  • Flexible timetables
  • A variety of features to choose from
Main Features
  • Professional certificates
  • University-level courses
  • Online degree programs
Pros
  • Well-established in the industry
  • A wide range of features to choose from
  • University-level courses
Main Features
  • University-level courses
  • Suitable for enterprises
  • Paid Certificates of completion
Pros
  • Simplistic design (no unnecessary information)
  • Good quality of courses (even the free ones)
  • A few different features to choose from
Main Features
  • Nanodegree Program
  • Suitable for enterprises
  • Paid Certificates of completion

Aprendizaje profundo

Otra parte esencial sobre qué es machine learning es el aprendizaje profundo. Este proceso es una técnica de aprendizaje automático que les ayuda a aprender de los ejemplos, al igual que los humanos. Si has visto autos que se conducen por su cuenta, entonces probablemente tuviste tu primer contacto con el aprendizaje automático.

En el aprendizaje profundo, la inteligencia artificial puede aprender a realizar tareas a partir de imágenes, textos, sonidos, como un humano a partir de libros, vídeos o conferencias. Los seres humanos siempre tienen la oportunidad de cometer errores, mientras que las computadoras con modelos de aprendizaje profundo pueden lograr una precisión de imagen perfecta y superar el rendimiento humano. Los modelos de aprendizaje profundo son parte de las redes neuronales, ya que utilizan los datos y conjuntos de datos etiquetados que se han recopilado. Es una parte enorme de lo qué es machine learning.

Ejemplo de la vida real: Sofía el Robot
What is machine learning - Real life example Sofia

Aunque el nombre en sí mismo sugiere que es un robot, no te dejes engañar. El robot es lo que está en el exterior, el esqueleto de todo el proyecto. Lo más impresionante de Sofía es su mente.

Sofía es un robot humanoide social desarrollado por la empresa Hanson Robotics. Fue activada el 14 de febrero de 2016.

Combinado con muchos algoritmos, el robot Sofía puede ver, seguir movimientos, mantener el contacto visual con su compañero y reconocer a las personas. Incluso puede entender el rostro, las expresiones de las personas y las emociones de los compañeros. Todo este proceso se realiza a través de las cámaras que hay en sus ojos. En 2018 fue mejorada y desde entonces, Sofía el Robot puede caminar.

El creador de Sofía, David Hanson, dijo que el objetivo era crear un robot impulsado por el machine learning que pudiera servir en la atención sanitaria, el servicio al cliente, la terapia o la educación. La inteligencia artificial de Sofía está siendo constantemente entrenada en el laboratorio, por lo que está desarrollando nuevas habilidades y cometiendo menos errores mientras hablamos.

Además, el aprendizaje automático de Sofía es tan innovador que combina redes neuronales de vanguardia, sistemas expertos, percepción automática, procesamiento conversacional del lenguaje natural, control motor adaptativo y arquitectura cognitiva.

Sofía, el robot puede funcionar de forma independiente: la primera es una operación completamente autónoma, la segunda es una operación ML mezclada con palabras generadas por el hombre. Se trata de una inteligencia híbrida humano-ML en pleno funcionamiento.

Panorama general

Es difícil negar que machine learning es la tecnología más avanzada que existe. Es importante reconocer que si queremos crecer y seguir mejorando las vidas humanas es una de las mejores maneras de hacerlo. Si deseas entender mejor lo qué es machine learning y aprender más sobre él, dirígete a nuestro curso BitDegree y pruébelo. Si estás interesado en los fundamentos básicos de machine learning, entonces dirígete a este curso.

Leave your honest review

Leave your genuine opinion & help thousands of people to choose the best online learning platform. All reviews, either positive or negative, are accepted as long as they’re honest. We do not publish biased reviews or spam. So if you want to share your experience, opinion or give advice - the scene is yours!

FAQ

How do you choose which online course sites to review?

We pick online learning platforms according to their market size, popularity, and, most importantly, our users’ request or general interest to read genuine MOOC reviews about certain online learning platforms.

How much research do you do before writing your e-learning reviews?

Our dedicated MOOC experts carry out research for weeks – only then can they say their evaluations for different aspects are final and complete. Even though it takes a lot of time, this is the only way we can guarantee that all the essential features of online learning platforms are tried and tested, and the verdict is based on real data.

Which aspect is the most important when choosing the best online learning platforms?

It wouldn’t be right to pick just one aspect out of the selection: priorities depend on each individual person, their values, wishes, and goals. A feature that’s important to one person can be utterly irrelevant to the other. Anyhow, all users would agree that good quality of the learning material is a must for online learning platforms.

How is this e-learning review platform different from others?

Every MOOC-reviewing platform is unique and has its own goals and values. Our e-learning reviews are 100% genuine and written after performing a careful analysis. That is the goal that a lot of e-learning review sites lack, so we consider it to be our superpower!